Attenuated plasticity of postsynaptic kainate receptors in hippocampal CA3 pyramidal neurons.

نویسندگان

  • Koichi Ito
  • Anis Contractor
  • Geoffrey T Swanson
چکیده

Kainate receptor-mediated components of postsynaptic currents at hippocampal mossy fiber synapses have markedly slower kinetics than currents arising from AMPA receptors. Here, we demonstrate that other aspects of kainate and AMPA receptor function at this synapse are distinct; in particular, kainate receptor currents are less sensitive to short- and long-term increases in presynaptic strength. EPSCs arising predominantly from AMPA receptors exhibited well characterized paired-pulse facilitation, frequency facilitation, and NMDA receptor-independent long-term potentiation, whereas isolated kainate receptor synaptic currents (KA-EPSCs) exhibited attenuated facilitation and long-term potentiation. In addition, KA-EPSCs varied in their sensitivity to a low-affinity competitive antagonist, suggestive of a synaptic heterogeneity greater than that of EPSCs comprised predominantly of AMPA receptors. These data suggest that the proportional contribution of AMPA and kainate receptors to ensemble synaptic currents will vary depending on the firing frequency of mossy fiber afferents. These synaptic features may be a mechanism for limiting activation of kainate receptors at mossy fiber synapses, which has been shown to be involved in seizurogenic firing of the CA3 network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions

Hilar mossy cells (HMCs) in the hippocampus receive glutamatergic input from dentate granule cells (DGCs) via mossy fibers (MFs) and back-projections from CA3 pyramidal neuron collateral axons. Many fundamental features of these excitatory synapses have not been characterized in detail despite their potential relevance to hippocampal cognitive processing and epilepsy-induced adaptations in circ...

متن کامل

Ethanol inhibition of synaptically evoked kainate responses in rat hippocampal CA3 pyramidal neurons.

Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate ...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons

The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectiv...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 27  شماره 

صفحات  -

تاریخ انتشار 2004